- Bedard, R. L., Vail, L. D., Wilson, S. T. & Flanigen, E. M. (1990). US Patent 4 933 068.
- Bedard, R. L., Wilson, S. T., Vail, L. D., Bennett, J. M. & Flanigen, E. M. (1989). In Zeolites: Facts, Figures, Future. Proc. 8th Int. Zeolite Conf. Amsterdam: Elsevier.
- Briend, M., Lamy, A., Peltre, M. J., Man, P. P. & Barthomeuf, D. (1993). Zeolites, 13, 201-211.
- Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
- Dittmar, V. G. & Schäfer, H. (1978). Z. Anorg. Allg. Chem. 441, 93–97, 98–102.
- Eisenmann, B. & Schäfer, H. (1979). Z. Naturforsch. Teil B, 34, 383-385.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Ko, Y., Cahill, C. & Parise, J. B. (1994). J. Chem. Soc. Chem. Commun. pp. 69-70.
- Krebs, B. (1983). Angew. Chem. Int. Ed. Engl. 22, 113-134.
- Lundgren, J. O. (1972). Acta Cryst. B28, 475-481.
- Lundgren, J. L. & Lundin, P. (1972). Acta Cryst. B28, 486-491.
- Mereiter, K., Preisinger, A. & Zellner, A. (1984). J. Chem. Soc. Dalton Trans. pp. 1275-1277.
- Mootz, D. & Fayos, J. (1970). Acta Cryst. B26, 2046-2054.
- Parise, J. B. (1990). J. Chem. Soc. Chem. Commun. pp. 1553-1554.
- Parise, J. B. (1991). Science, 251, 293-294.
- Parise, J. B. & Ko, Y. (1992). Chem. Mater. 4, 1446-1450.
- Parise, J. B., Ko, Y., Rijssenbeek, J., Nellis, D. M., Tan, K. & Koch, S. (1994). J. Chem. Soc. Chem. Commun. p. 527.
- Sheldrick, W. S. (1988). Z. Anorg. Allg. Chem. 562, 23-30.
- Sheldrick, W. S. & Braunbeck, H.-G. (1990). Z. Naturforsch. Teil B, 45, 1643-1646.
- Sheldrick, W. S. & Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 557, 105-111.
- Tan, K., Ko, Y. & Parise, J. B. (1994). Acta Cryst. C50, 1439-1442.
- Wu, E. L., Kuhl, G. H., Whyte, T. E. Jr & Venuto, P. (1971). Molecular Sieve Zeolites. Adv. Chem. Ser, 101, pp. 490–501. Washington, DC: American Chemical Society.
- Wu, E. L., Whyte, T. E. Jr & Venuto, P. (1971). J. Catal. 21, 384-393.

Acta Cryst. (1995). C51, 401-403

8-(Ph₂PCH₂CH₂PPh₂)-8,7-*nido*-RhSB₉H₁₀.2CH₂Cl₂

KERRY J. ADAMS, THOMAS D. MCGRATH AND ALAN J. WELCH*

Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, Scotland

(Received 1 May 1994; accepted 30 August 1994)

Abstract

The synthesis and the solid-state structure determination by a low-temperature single-crystal X-ray diffraction study of 8-[1,2-bis(diphenylphosphinoethane)]-9,10- μ hydrido-8-rhoda-7-thia-*nido*-undecaborane(10), [Rh(B₉-H₁₀S)(C₂₆H₂₄P₂)].2CH₂Cl₂, as the bis(dichloromethane)

solvate are reported. In terms of conventional electroncounting rules, this species has an anomalous polyhedral geometry; two one-electron agostic type Rh-H-Cinteractions are proposed as the source of an additional skeletal electron pair which satisfies cluster-bonding requirements.

Comment

We are, at present, investigating examples of unusual structural behaviour in metallaheteroboranes. As part of this programme we have become interested in the anomalous geometries observed in 11-vertex rhodathiaboranes (Ferguson *et al.*, 1990; Murphy, Spalding, Ferguson & Gallagher, 1992) which display a *nido* cage architecture while apparently possessing a cluster electron count more appropriate to a *closo* geometry (Wade, 1976; Mingos, 1984). Herein we present the synthesis and structural characterization of a further example of such species, namely 8-(Ph₂P—CH₂CH₂—PPh₂)-9,10- μ -H-8,7-*nido*-RhSB₉H₉, (I), and discuss a possible solution to this problem.

The title rhodathiaborane crystallizes with no crystallographically imposed symmetry and no close intermolecular contacts. Two molecules of dichloromethane co-crystallize with this species. This high proportion of solvate causes the crystal lattice to be very unstable with respect to solvent loss: crystal growth by solvent diffusion has to be arrested to avoid diffusion of dichloromethane out of the lattice; crystal transfer was therefore performed at 195 K (dry-ice bath) and data were collected at 210 K.

A perspective view of a single molecule, with the atomic numbering scheme adopted, is shown in Fig. 1.

As with previous examples of species of this type, the 11-vertex RhSB₉ polyhedron shows gross *nido*icosahedral geometry. The Rh(8)—S(7) distance in the present compound is 2.366 (2) Å, shorter than in the 8,8-(PPh₃)₂- (Ferguson *et al.*, 1990) (A) and 8,8-(PPh₃)₂-9-(OEt)- (Murphy, Spalding, Ferguson & Gallagher, 1992) (B) analogues, where the correspond-

^{*} Address correspondence to: Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.

Fig. 1. Perspective view of 8-(dppe)-8,7-*nido*-RhSB₉H₁₀ (50% displacement ellipsoids, except for H atoms which have artificial radii of 0.1 Å for clarity).

ing separations are 2.3769 (6) and 2.375 (2) Å, respectively. In all three compounds the equivalent Rh—B and S—B distances are essentially similar. Likewise, the Rh(8)—P(2) distance (*trans* to sulfur) is 2.237 (2) Å, somewhat less than Rh(8)—P(1) (*cis* to sulfur) which is 2.321 (2) Å [*cf.* 2.2906 (5) and 2.4197 (5) Å in (A); 2.278 (2) and 2.417 (1) Å in (B)]. Cage B—B separations lie in the range 1.730 (12)–1.879 (11) Å, typical of metalla(hetero)boranes of this kind.

The environment of the Rh atom resembles a distorted octahedron with a vacant coordination site trans to B(9). We note, however, the presence of two close Rh...H approaches in the vicinity of this vacant position $[Rh(8) \cdots H(26) \text{ is } 3.174 \text{ and } Rh(8) \cdots H(46) \text{ is } 2.809 \text{ Å}];$ the coordinates of the midpoint (X) of the H(26)— H(46) vector lie in the direction of this unoccupied site. [The three angles P(1)—Rh(8)—P(2), P(1)—Rh(8)— X and P(2)—Rh(8)—X are 84.22(6), 88 and 87°, respectively: the metal vertex effectively constitutes a conical fragment.] This observation prompts us to suggest the existence of two long-range agostic type (Brookhart & Green, 1983; Brookhart, Green & Wong, 1988) Rh-H-C interactions which supply the metal centre with an additional two electrons and thereby render a cluster electron count consistent with the observed geometry. Indeed, a similar scenario is found to occur around the Rh atom in the previously reported analogues (A and B) of the present compound. Future contributions will further address the above phenomena.

Experimental

The title compound is synthesized in good yield by the interaction of $[Rh(dppe)_2Cl]_2$, formed *in situ* (*cf.* Albano, Aresta & Manassero, 1980), and the thiaborane precursor under oxygen-free conditions. A solution of Ph₂PCH₂CH₂PPh₂ (dppe, 0.21 g, 0.52 mmol) in toluene (7 ml) was added slowly to a suspension of $[Rh(CH_2=CH_2)_2Cl]_2$ (0.10 g, 0.26 mmol) (Fairlie & Bosnich, 1988) in toluene (10ml); the mixture was stirred for 22 h then frozen to 77 K. Solid Cs[SB₉H₁₂] (Rudolph & Pretzer, 1983) (0.14 g, 0.52 mmol) was added to the frozen orange-yellow suspension, the mixture allowed to warm to room temperature and stirred for 5 h, during which time the solution was observed to darken. Filtration (Celite, 1 atm) and evaporation *in vacuo* yielded the crude product as an orange powder. This was purified by preparative thin-layer chromatography (silica gel; CH₂Cl₂/*n*-hexane, 3:2; product R_f 0.4) to yield the title compound in 56% yield (0.154 g, 0.29 mmol). Analysis: found, C 48.19, H 5.08%; calculated for C₂₆H₃₄B₉P₂RhS, C 48.74, H 5.35%. The compound was crystallized by slow diffusion of *n*-hexane into dichloromethane solution at 243 K.

Crystal data

 $[Rh(B_9H_{10}S)(C_{26}H_{24}P_2)]$.-Mo $K\alpha$ radiation $2CH_2Cl_2$ $\lambda = 0.71069 \text{ Å}$ $M_r = 810.63$ Cell parameters from 25 Triclinic reflections $P\overline{1}$ $\theta = 8 - 10^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$ a = 11.161 (2) Å *b* = 11.338 (6) Å T = 210 (1) Kc = 17.206 (13) ÅRhombic block $\alpha = 98.726 (56)^{\circ}$ $0.45 \times 0.4 \times 0.4$ mm $\beta = 107.306 \ (40)^{\circ}$ Orange $\gamma = 111.682 (39)^{\circ}$ $V = 1845.8 \text{ Å}^3$ Z = 2 $D_x = 1.458 \text{ Mg m}^{-3}$ Data collection Enraf-Nonius CAD-4 $R_{\rm int} = 0.2280$ diffractometer $\theta_{\rm max} = 25^{\circ}$ ω -2 θ scans $h = 0 \rightarrow 13$ $k = -13 \rightarrow 12$ Absorption correction: $l = -20 \rightarrow 15$ none 6131 measured reflections 2 standard reflections 5771 independent reflections frequency: 480 min 5364 observed reflections intensity decay: <3.5% $[F \geq 2.0\sigma(F)]$ Refinement $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$ Refinement on F R = 0.0528(near Rh, S) $\Delta \rho_{\rm min} = -1.14 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.0846S = 1.618Extinction correction: none 5364 reflections Atomic scattering factors 359 parameters from International Tables $w = 1/[\sigma^2(F) + 0.000391F^2]$ for X-ray Crystallography $(\Delta/\sigma)_{\rm max} = 0.001$ (1974, Vol. IV) (Rh); SHELX76 (Sheldrick, 1976)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
Rh(8)	0.10159 (4)	0.23566 (4)	0.18360 (2)	0.0225 (3)
S(7)	0.11964 (15)	0.23326 (4)	0.04986 (9)	0.0329 (9)
B(1)	0.4036 (7)	0.2508 (6)	0.1661 (4)	0.034 (4)

B(2)	0.3064 (7)	0.2417 (6)	0.0623 (5)	0.040 (5)
B(3)	0.2224 (7)	0.1522 (6)	0.1292 (4)	0.036 (4)
B(4)	0.3169 (7)	0.2520 (7)	0.2379 (4)	0.035 (4)
B(5)	0.4478 (7)	0.4029 (7)	0.2413 (4)	0.038 (5)
B(6)	0.4354 (7)	0.3974 (6)	0.1346 (5)	0.040 (5)
B(9)	0.2969 (7)	0.4072 (6)	0.2532 (4)	0.031 (4)
B(10)	0.3738 (7)	0.4957 (6)	0.1842 (5)	0.039 (5)
B(11)	0.2809 (8)	0.3938 (7)	0.0706 (5)	0.048 (5)
P(1)	-0.06066(14)	0.32101 (13)	0.17119 (9)	0.0268 (9)
P(2)	0.06739 (14)	0.20171 (13)	0.30155 (9)	0.0253 (9)
C(1)	-0.1253(6)	0.3010 (6)	0.2570 (3)	0.034 (4)
C(2)	-0.0118 (6)	0.3051 (5)	0.3363 (3)	0.030 (4)
$\hat{\mathbf{C}}(1)$	0.0233 (4)	0.4997 (3)	0.18605 (18)	0.032 (4)
C(12)	0.0528 (4)	0.5403 (3)	0.11858 (18)	0.042 (4)
C(13)	0.1266 (4)	0.6749 (3)	0.12856 (18)	0.051 (5)
C(14)	0.1709 (4)	0.7690 (4)	0.20602 (18)	0.055 (5)
C(15)	0.1414 (4)	0.7285 (3)	0.27350 (18)	0.059 (5)
C(16)	0.0676 (4)	0.5938 (3)	0.26352 (18)	0.044 (4)
C(21)	-0.2162 (3)	0.2552 (3)	0.0744 (2)	0.028 (3)
C(22)	-0.2937(3)	0.3264 (3)	0.0542 (2)	0.036 (4)
C(23)	-0.4158(3)	0.2711 (3)	-0.0191 (2)	0.045 (5)
C(24)	-0.4603(3)	0.1445 (3)	-0.0722 (2)	0.048 (5)
C(25)	-0.3828(3)	0.0733 (3)	-0.0520 (2)	0.059 (5)
C(26)	-0.2607 (3)	0.1286 (3)	0.0213 (2)	0.042 (4)
C(31)	0.2028 (4)	0.2187 (3)	0.3993 (2)	0.031 (4)
C(32)	0.2954 (4)	0.3439 (3)	0.4569 (2)	0.036 (4)
C(33)	0.4010 (4)	0.3566 (3)	0.5305 (2)	0.048 (5)
C(34)	0.4139 (4)	0.2439 (3)	0.5465 (2)	0.054 (5)
C(35)	0.3213 (4)	0.1187 (3)	0.4889 (2)	0.060 (6)
C(36)	0.2158 (4)	0.1061 (3)	0.4153 (2)	0.045 (5)
C(41)	-0.0651 (4)	0.0311 (3)	0.2671 (2)	0.029 (4)
C(42)	-0.1699 (4)	-0.0077 (4)	0.2992 (2)	0.037 (4)
C(43)	-0.2717 (4)	-0.1392 (3)	0.2695 (2)	0.047 (5)
C(44)	-0.2686 (4)	-0.2319 (3)	0.2077 (2)	0.049 (5)
C(45)	-0.1637 (4)	-0.1931 (3)	0.1756 (2)	0.043 (4)
C(46)	-0.0620 (4)	-0.0616 (3)	0.2053 (2)	0.042 (4)
C(1S)	0.8552 (7)	0.6712 (7)	0.3824 (4)	0.053 (5)
C1(1S)	0.88088 (18)	0.54710 (16)	0.42582 (10)	0.0528 (12)
C1(2S)	0.9828 (2)	0.83078 (18)	0.44954 (14)	0.0727 (15)
C(2S)	0.5842 (8)	0.2122 (9)	0.3942 (6)	0.079 (7)
CI(3S)	0.5329 (4)	0.0492 (3)	0.3362 (2)	0.145 (3)
C1(4S)	0.7290 (3)	0.2621 (3)	0.4889 (3)	0.144 (3)

Table 2. Selected geometric parameters (Å, °)

Cage B-B-B angles not given in this table are in the range 57.2 (4)-64.6 (4)°.

Rh(8)	2.3659 (17)	B(3)—B(4)	1.787 (10)
Rh(8) - B(3)	2.239 (7)	B(4)—B(5)	1.771 (11)
Rh(8)B(4)	2.228 (7)	B(4)—B(9)	1.843 (10)
Rh(8)—B(9)	2.139 (7)	B(5)—B(6)	1.790 (11)
Rh(8)P(1)	2.3214 (16)	B(5)—B(9)	1.773 (11)
Rh(8)—P(2)	2.2365 (16)	B(5)—B(10)	1.797 (11)
S(7)—B(2)	1.996 (8)	B(6)—B(10)	1.752 (11)
S(7) - B(3)	2.062 (8)	B(6)—B(11)	1.730 (12)
S(7) - B(11)	1.918 (9)	B(9)—B(10)	1.866 (10)
B(1) - B(2)	1.757 (11)	B(10)—B(11)	1.859 (11)
B(1) - B(3)	1.759 (10)	P(1) - C(1)	1.834 (6)
B(1)B(4)	1.783 (10)	P(1)C(11)	1.829 (4)
B(1) - B(5)	1.791 (11)	P(1) - C(21)	1.814 (4)
B(1) - B(6)	1.770 (11)	P(2) - C(2)	1.838 (6)
B(2) - B(3)	1.879 (11)	P(2) - C(31)	1.823 (4)
B(2) - B(6)	1.768 (11)	P(2) - C(41)	1.815 (4)
B(2)B(11)	1.840 (12)	C(1)-C(2)	1.542 (9)
S(7)B(3)	53.13 (19)	Rh(8)P(1)C(21)	120.07 (14
S(7)—Rh(8)—B(4)	90.1 (2)	C(1) - P(1) - C(11)	106.3 (2)
S(7)-Rh(8)-B(9)	94.4 (2)	C(1) - P(1) - C(21)	105.1 (2)
S(7)-Rh(8)-P(1)	99.22 (6)	S(7) - B(2) - B(3)	64.2 (3)
S(7)—Rh(8)—P(2)	170.62 (6)	S(7) - B(2) - B(11)	59.8 (4)
B(3) - Rh(8) - B(4)	47.2 (3)	Rh(8)—B(3)—S(7)	66.6 (2)
B(3)-Rh(8)-B(9)	85.9 (3)	Rh(8)—B(3)—B(4)	66.1 (3)
B(3)-Rh(8)-P(1)	151.89 (19)	S(7)—B(3)—B(2)	60.6 (3)
B(3)-Rh(8)-P(2)	122.28 (19)	Rh(8) - B(4) - B(3)	66.7 (3)
B(4)Rh(8)B(9)	49.9 (3)	Rh(8)—B(4)—B(9)	62.5 (3)

B(4)—Rh(8)—P(1)	152.4 (2)	C(11) - P(1) - C(21)	105.20 (18)
B(4) - Rh(8) - P(2)	90.8 (2)	Rh(8)—P(2)—C(2)	110.1 (2)
B(9) - Rh(8) - P(1)	103.2 (2)	Rh(8) - P(2) - C(31)	124.68 (14)
B(9) - Rh(8) - P(2)	93.3 (2)	Rh(8)—P(2)—C(41)	104.37 (14)
P(1) - Rh(8) - P(2)	84.22 (6)	C(2)P(2)C(31)	104.5 (2)
Rh(8) - S(7) - B(2)	107.1 (2)	C(2) - P(2) - C(41)	106.0 (2)
Rh(8)—S(7)—B(3)	60.3 (2)	C(31) - P(2) - C(41)	105.84 (19)
Rh(8)—S(7)—B(11)	105.6 (3)	P(1) - C(1) - C(2)	110.3 (4)
B(2) = S(7) = B(3)	55.1 (3)	P(2) - C(2) - C(1)	108.5 (4)
B(2) = S(7) = B(11)	56.1 (3)	P(1)C(11)C(12)	117.4 (3)
B(3) = S(7) = B(11)	96.7 (3)	P(1)-C(11)-C(16)	122.4 (3)
Rh(8)B(9)B(4)	67.6 (3)	P(1)-C(21)-C(22)	121.3 (3)
Rh(8)—B(9)—B(10)	113.8 (4)	P(1)-C(21)-C(26)	118.7 (3)
B(9)—B(10)—B(11)	111.0 (5)	P(2)-C(31)-C(32)	120.3 (3)
S(7) - B(11) - B(2)	64.1 (4)	P(2)-C(31)-C(36)	119.7 (3)
S(7) - B(11) - B(10)	113.9 (5)	P(2) - C(41) - C(42)	121.8 (3)
Rh(8) - P(1) - C(1)	109.3 (2)	P(2)—C(41)—C(46)	118.2 (3)
Rh(8) - P(1) - C(11)	110.02 (14)		

Data reduction was carried out using CADABS (Gould & Smith, 1986). SHELX76 (Sheldrick, 1976) was used to solve the structure via Patterson and difference Fourier syntheses, as well as for refinement. Molecular graphics were produced using SHELXTL/PC (Sheldrick, 1990). Molecular geometry calculations were performed with CALC (Gould & Taylor, 1986). Phenyl rings were constrained to be regular hexagons (C-C 1.395 Å). Cage terminal H atoms, phenyl and methylene H atoms were set in idealized positions (C-H 1.08, B-H 1.10 Å). The cage bridging H atom was located by difference Fourier synthesis and its position fixed thereafter. For all H atoms a common isotropic displacement parameter was refined $[U = 0.063 (4) \text{ Å}^2 \text{ at convergence}].$

We thank the EPSRC for support (KJA, TDM) and the Callery Chemical Company for a generous gift of $B_{10}H_{14}$.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1131). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

4)

- Albano, P., Aresta, M. & Manassero, M. (1980). Inorg. Chem. 19, 1069-1072.
- Brookhart, M. & Green, M. L. H. (1983). J. Organomet. Chem. 250, 395-408.
- Brookhart, M., Green, M. L. H. & Wong, L.-L. (1988). Prog. Inorg. Chem. 36, 1-124.
- Fairlie, D. P. & Bosnich, B. (1988). Organometallics, 7, 936-945.
- Ferguson, G., Jennings, M. J., Lough, A. J., Coughlan, S., Spalding, T. R., Kennedy, J. D., Fontaine, X. L. R. & Stibr, B. (1990). J. Chem. Soc. Chem. Commun. pp. 891-894.
- Gould, R. O. & Smith, D. E. (1986). CADABS. Program for Data Reduction. Univ. of Edinburgh, Scotland.
- Gould, R. O. & Taylor, P. (1986). CALC. Program for Crystallographic Calculations. Univ. of Edinburgh, Scotland.
- Mingos, D. M. P. (1984). Acc. Chem. Res. 17, 311-319.
- Murphy, M., Spalding, T. R., Ferguson, G. & Gallagher, J. F. (1992). Acta Cryst. C48, 638-641.
- Rudolph, R. W. & Pretzer, W. R. (1983). Inorg. Synth. 22, 226-231.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wade, K. (1976). Adv. Inorg. Chem. Radiochem. 18, 1-66.